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ABSTRACT 

Some cosmological implications of superstring theories are 

discussed. In particular, the possible role of the limiting temperature in 

the early universe is examined. 
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Recent developments in superstring theory by Green and 

SchwarzLIJ indicate that superstring is a prime candidate for the unified 

theory of all forces in nature. If the superstring is indeed the model of 

unified forces, it must provide solutions to ( or ways to bypass ) all the 

cosmological problems that we usually face. In particular, questions 

concerning the cosmological constant, the horizon and the flatness 

problems should be answered by the superstring theory. The latter 

problems are related to the early evolution of the universe. Here the 

discussion will be limited to the implications of the limiting temperature 

feature present in string theories on these cosmological problems in the 

early universe. It is well known that any string model has a spectrum 

whose degeneracy grows exponentially as a function of the masst2’, 

Hagedorn first observed that such a spectrum implies a limiting 

temperatureL3’. Consequences in the early universe due to such a limiting 

temperature coming from the dual string model was studied by Huang and 

WeinbergL4’. Here I shall investigate the issues in superstring models. 

Let us write the number of species of particles with mass 

between m and m+dm as N(m)dm. For large m, 

N(m) dm + A rnmB e80m dm (I) 

The thermodynamical partition functions would converge only if the 

temperature T=l/b Is below the value To= I /Bo. Therefore the limiting 

temperature To Is the maxlmum temperature for a system in thermal 

equilibrium. The Green and Schwarz ( G-S) SO(32) superstring tlfincludes 

both the open and the closed strings. Let p(n) be the level degeneracy, i.e. 

the number of states, of the open string at the level n, where n= M-m2 ( 
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m=mass ). Then p(n) = I6 C, q D(n) , where q D(n) 1s given by 

CqD(n)xn= lT (1 +xk)D/(l -xk) D 

n k 

so that, for asymptotically large n,lsl 

p(n) -) I 6 ,-, (D/64)(D+ I)/4 ,-(D+3)/4 end 0-d (2) 

Light-cone quantization shows that D is the number of transverse 

directions, i.e. D=8, since the superstring is in IO-dimenslons. Here 

C,=496 for even integer n and C,=528 for odd n. Because of 

supersymmetry, p(n) includes equal numbers of bosonic and fermionic 

states for each n. In addition to the choice c=k=fi=l,it is convenient to 

choose the mass scale M = I /,foc’ such that o(’ = I. USing eq.( I ) and q&I), 

the superstring has 

@o= I /To= 1-f(2J2) , B=9/2 (3) 

We observe that the coefficient B is insensitive to the fermionic content 

of the string.The level degeneracy of the closed strings of the G-S 

superstring is given by p(n) = I28 q8(n)2. Therefore it has the same 

limiting temperature with B=lO. Also the coefficient A for the closed 

string is rather small in comparison to the open string. Hence, to a 

reasonable approximation, the closed string states in the G-S superstring 

can be ignored in the calculations of thermodynamical quantities. 

On the other hand, the phenomenologically interesting EsxEs 

Heterotic String I61 has only closed string states. Its level degeneracy is 

given as a product of the level degeneracies of the left and the right 
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moving states. 

pHtn) =pL (n+ 1) pRtn) 

where pR(n) = I6 q8(n) and pt(n) iS given by’6J71 

pL(n) = 4801 u,(n-m) d24(m) 

where a7(n) is the sum of the 7th power of the divisors of n, with 

cS7(0) defined to be I /480 and d&-l) is given by Cd D(n) X n =‘T( I -X k )-D. 

From the asymptotic form of the level degeneracy, Its limiting 

temperature16’ and the corresponding B are 

i30= x(2+/2), B=lO (4) 

We note that, without compactification, the counting gives B=l8. The 

compactification on a self-dual lattice decreases B to IO, while the 

limiting temperature is unchanged. The limiting temperature for both 

superstring models are around a tenth of M. The above formulae are 

evaluated for the free strings. To calculate the energy density and the 

pressure in thermal equilibrium, string interactions must be introduced to 

allow the string states to come to thermal equilibrium. It turns out that 

the above formulae are valid in the presence of tree level string 

interactions, since in this approximation, the string states have zero 

widths LB’, We shall discuss string interactions beyond the tree level later. 

The compactification (from ‘0 dimensions to K+1=4 dimensions ) 

scale is expected to be close to M In this case, the limiting temperature 

will be unaffected while the coefficient B may be somewhat decreased or 

remains unchanged. On the other hand, the momentum integration in the 

evaluation of interesting quantities such as the energy density and the 

pressure of the massive states are effectively that of the final (K+l) 
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dimensional space-time. The reason for this is quite simple. Due to the 

extreme rapid increase in the number of massive states with energy, 

most of the available energies are used to form new massive states 

instead of converting into kinetic energies of the IeSS massive ones. 

Hence the momenta of the massive states are very small. Since the 

momenta in the compactified dimensions are dicrete, the contributions 

of the zero momentum modes in those dimensions dominate. Therefore, 

depending on the scale (or scales ) of compactification, the effective 

space-time dimension may be IO or 4 or any dimension in between. For 

effective (K+l) space-time dimensions, the pressure P is given by 

P&,8)= PO(U) + P,(K& 

(5) 

PO(K,@) = 8FKcO T(K) t(K+ 1 )8-K-‘2’-K, l-(K/2) 

P, (K, 8) = 2 I” dm N(m) (m/27f8)(K+ ’ )‘2 K (K+ ,)/#d 

where it is convenient to separate the contribution of the maSSleSS 

particles to the pressure P. namely PO , from that of the massive 

particles, namely PI, Here <(K+l) is the Riemann Zeta function, l?K/2) 

the Gamma function and K(K+])/2 the modified Bessel function. FK 

includes the bose-fermionic effect, FK= 1 + (l-2-K). For the massive 

states, the bose-fermionic difference is negligible. The lower 
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integration limit is m=l for open strings and m=2 for closed strings”’ 

The energy density p is given by 

p(K) 8) = KP(K ,8) + p2(K ,8) (6) 

p2(K,8) =n-l J” dm N(m) m2(m/2na)rK-1)‘2K(K_l ),2(#m) 

As the temperature approaches the limiting temperature from below, the 

behaviors of P and p depend on both the value of BK and the effective 

dimension K. For T -) To , we find 

BK-K/2-2 

p a (To-T) 

a 1 In(To-T)( 

+ finite 

for 6K < K/2+2 

BK = K/2+2 

BK ’ K/2+2 

0) 

where the pressure has similar behaviors if the value B in eq.(7) iS 

replaced by B+l. The above property is similar to that first observed in 

Ref.[41. For the Heterotic string where B=lO, both p and P approach 

finite values as T approaches the limiting temperature in any 

dimension. For the G-S string , the critical space-time dimension iS 

K+l = 2BK-3 6 6. If, for some as yet unknown reasons, the energy 

density must remain finite at T-To , then dimensional compactification 

is necessary to reduce the lo-dimensional space-time to 5 or IeSS 
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dimensions, ( depending on the value of BK which in turn depends on the 

compactification ). This may suggest a dynamical reason for 

compactification. 

Recent discussionst’“j on the compactif ication of superstrings 

indicate that, among other properties: (1) the cosmological constant is 

zero or close to zero at that scale; (2) the Grand unification (GUT) 

symmetry breaking is probably due to expectation values of Wilson lines 

in the non-simply-connected manifold instead of the usual Higgs 

mechanism; and (3) topological objects such as cosmic strings, domain 

walls, monopoles etc. are formed at the GUT scale. Properties (1) and (2) 

seem to suggest that the necessary ingredients for the standard 

inflation 1’ ‘~‘~1 ( which is introduced to solve the flatneSS problem, the 

horizon problem, and problems related to densities of heavy topological 

objects ) are missing. If so , it is not clear how these cosmological 

problems are solved in the superstring theory. One expects tremendous 

entropy generation at the GUT scale to suppress the densities of the 

heavy objects while not affecting the baryosynthesis that should take 

place at a temperature close to but slightly lower than the GUT 

scale1 l ‘I. 

There are a number of possibilities, depending on the details of 

the dynamics. We shall discuss some of the possobilities here. Let us 

first consider the case of the G-S string with compactification to our 

4-dimensional spase-time or the Heterotic string. Suppose the universe 

is in thermal equilibrium precisely at the limiting temperature at 

certain time. The finite energy desity p as well as the pressure P are at 

their maximum values, p max and Pmax , respectively. Given the 
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fornulae for p and P, we can use the equation of state and the Einstein 

equations to study the evolution of the universe. As T begins to drop 

below To , p decreases until it reaches three times the pressure while 

PI hardly changes (actually PI is quite negligible any way ) The 

entropy S, given as S= (P + p) R3J, (where R is the cosmic scale 

factor ) cannot be conserved during the early part of this expansion 

period of the universe. This is somewhat like isobaric expansion where 

entropy is being generated. However, a straightforward calculation 

shows that the amount of entropy generated is rather modest. far from 

the amount necessary to solve the cosmological problems. The same 

picture emerges if the universe starts at a lower temperature. 

Alternatively, the Universe may Start at a density and /Or 

pressure above their maximum values allowed by thermal equilibrium. In 

this case, the universe will be in a non-equilibrium state until the 

expansion brings p and P down so that it can settle into thermal 

equilibrium at T<TO. Unfortunately, such out-of -equilibrium expansion 

is difficult to study. If somehow the universe can remain in thermal 

equilibrium at T above To, we still do not see enough inflation taking 

place in a way consistent with observations. 

Suppose the compactification has not yet taken place at To. One 

obvious possibility of large entropy generation is via dimensional 

compact if icat ion , similar to that proposed for Kaluza-Klein 

compactif ication t ’ 31. Also the expectation values of Wilson lines on the 

non-simply connected manifold may help to stabilze the radii of the 

extra dimensions at the compactification scale. Here, the decay of an 
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exponentially large number of massive states may be of some help. 

Another possibility is that the limiting temperature is actually 

not an ultimate temperature, but rather it indicates the presence of a 

phase transition. It is Well known that, in Certain types of gauge 

theories, such as large-N gauge theory1t41, there are two phases: below 

the critical temperature T, , the theory is in the confining phase where 

the spectrum is essentially that of a string; while above T,, the theory 

is in the deconfining phase. In the deconfining phase, the spectrum does 

not have the type of degeneracy as given in eq.(2)-(4) so that 

temperatures above the limiting temperature are well defined. It is 

natural to entertain the possibility that superstring theories as 

formulated in RefI 1 .Sl correspond to the theories in the conf inlng phase. 

Above the critical temperature T,, where T, < To, the superstring 

theory enters the deconfining phase. It is likely that the limiting 

temperature is precisely the critical temperature. As T approaches T, 

from below , string-interactions beyond the tree approximation may 

become important. This will modify the behavior of quantities such as p 

and P near T,. 

The existence or the absence of such a phase transition may be 

revealed by a numerical analysis. If it exists, the order of such a phase 

transition may also be determined. Questions concerning the massless 

states become crucial. Hopefully the phase transition does not affect the 

massless graviton ( and the massless gauge fields ) so that the 

gravitational interactions remain the same above the critical 

temperature. This assumption is reasonable since confined states are 
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in general massive, with the possible exceptions of Goldstone-pion-like 

states and Goldstino-like states. If the phase transition is first order or 

if it is a slow one (as in the new inflatioary universe) it may provide 

the supercooling necessary for inflation. 

Although the inflation necessary to solve the cosmological 

problems may be related to the limiting temperature feature, no obvious 

scenario is founded. A more likely place to obtain inflation in the 

superstring theory may come from the evolution of the universe around 

the time of the gluino condensationti5j, which is mcessary for both 

supersymmetry breaking and may be for the zero cosmological constant 

constraint. This inflationary scenario is quite different from the new 

inflationary universe. It will be discussed elsewheret161. 

To conclude, it seems that the superstring theories have 

properties quite different from conventional theories so that the 

standard inflation may not be applicable. However, it does offer a 

number of new possibilities for tackling the cosmological problems. 

After the completion of this work, the work by M.J. Bowick and 

L.C.R. Wijewardhana ( Yale Preprint 85-04) has come to my attention. 

Their work is similar to mine, although they have not considered the 

cosmological implications. I thank the authors for discussions. 

Discussions with E. W. Kolb, L. McLerran, Y. Nambu, R. Pisarski, 

J. Rosner, W.-K. Tung , and, in particular S. Shenker, are gratefully 

acknowledged. I thank Professor Rosner and the Fermilab theory group 

for their hospitality. This research is supported by NSF and DOE. 
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